Ψ' to J/Ψ Ratio Measurements in PHENIX at RHIC

Marisílvia Donadelli

marisilvia@if.usp.br For the PHENIX Collaboration

Introduction

The Ψ' to the J/ Ψ production ratio in the dielectron channel has been measured at \sqrt{s} =200 GeV p+p interactions with PHENIX detector at RHIC. The measurement of the Ψ' and J/ Ψ states covered a rapidity range of |y|<0.35 (central arms) and transverse momentum range of 0.2<pT<5.5 GeV/c. This measurement may help constrain production models.

Detector System

- •Capacity to measure:
 - Hadrons, Muons, Electrons, Photons

- •Centrality measurement:
 - Beam Beam Counter
 - Zero Degree Calorimeter
- •Momentum measurement:
 - Drift Chambers
 - Pad Chambers
 - Time Expansion Chambers

Analysis Strategy

- Good capacity to trigger on lepton signals;
- Calibration and selection optimization of the electron identification;
- •Physical background: pairs of leptonic decays of J/Ψ, Ψ' and continuum;
- Invariant mass spectra for electron-positron pairs;
- Combinatorial background subtraction using same sign pairs from the same event as the sum of the like sign pairs (e⁺e⁺)+(e⁻e⁻);
- Combinatorial background subtracted plots fitted with three different methods;
- Geant based PHENIX Monte Carlo tuning;
- Estimation of acceptance and reconstruction efficiency by checking the response of PHENIX Monte
 Carlo to simulated J/Ψ and Ψ' particles with rapidity in |y|<0.35.

Final Results

- Fit strategy:
- Powerlaw (for physical background)
 + double gaussian(for J/Ψ) + single gaussian(for Ψ')
- Fix (J/Ψ-Ψ') mass difference with PDG value
- Let the J/Ψ and Ψ' widths vary independently.
- The ratio of Ψ' and J/Ψ cross sections In the e^+e^- channel, $R_{uv}(e)$ is equal to:

$$R_{\psi'}(e) = rac{\mathcal{B}' \cdot \sigma'}{\mathcal{B} \cdot \sigma} = rac{N_{\psi'}}{N_{J/\psi}} \cdot rac{\epsilon}{\epsilon'}$$

 $R_{uv} = 0.019 \pm 0.005 \text{ (stat)} \pm 0.002 \text{ (sys)}$

Electron Identification

Systematics Check

Fit strategy:

- Powerlaw (for physical background) + double gaussian (for J/Ψ) + double gaussian(for Ψ')
- Fix (J/Ψ-Ψ') mass difference with PDG value.
- Use same widths for J/Ψ and Ψ' distributions

Fit strategy:

- Exponential (for physical background) + double gaussian(for J/Ψ) + single gaussian(for Ψ')
- Fix (J/Ψ-Ψ') mass difference with PDG value
- Let the J/Ψ and Ψ' widths vary independently.

